A penalty method to model particle interactions in DNA-laden flows.

نویسندگان

  • D Trebotich
  • G H Miller
  • M D Bybee
چکیده

We present a hybrid fluid-particle algorithm to simulate flow and transport of DNA-laden fluids in microdevices. Relevant length scales in microfluidic systems range from characteristic channel sizes of millimeters to micron scale geometric variation (e.g., post arrays) to 10 nanometers for the length of a single rod in a bead-rod polymer representation of a biological material such as DNA. The method is based on a previous fluid-particle algorithm in which long molecules are represented as a chain of connected rods, but in which the physically unrealistic behavior of rod crossing occurred. We have extended this algorithm to include screened Coulombic forces between particles by implementing a Debye-Hückel potential acting between rods. In the method an unsteady incompressible Newtonian fluid is discretized with a second-order finite difference method in the interior of the Cartesian grid domain; an embedded boundary volume-of-fluid formulation is used near boundaries. The bead-rod polymer model is fully coupled to the solvent through body forces representing hydrodynamic drag and stochastic thermal fluctuations. While intra-polymer interactions are modeled by a soft potential, polymer-structure interactions are treated as perfectly elastic collisions. We demonstrate this method on flow and transport of a polymer through a post array microchannel in 2D where the polymer incorporates more realistic physical parameters of DNA, and compare to previous simulations where rods are allowed to cross. We also show that the method is capable of simulating 3D flow in a packed bed micro-column.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows

The direct numerical simulation of particle flows is investigated by a Lagrangian VOF approach and penalty methods of second order convergence in space for incompressible flows interacting with resolved particles on a fixed structured grid. A specific Eulerian volume of fluid method is developed with a Lagrangian tracking of the phase function while the solid and divergence free constraints are...

متن کامل

A Hard Constraint Algorithm to Model Particle Interactions in Dna-laden Flows

We present a new numerical method for particle interactions in polymer-fluid models of DNAladen flows. The DNA is represented by a bead-rod polymer model and is fully-coupled to the fluid. The main objective in this work is to properly model polymer-polymer and polymersurface interactions by enforcing the physical rod-rod and rod-surface non-crossing constraints. Our new method is based on a ri...

متن کامل

Collision model for fully resolved simulations of flows laden with finite-size particles.

We present a collision model for particle-particle and particle-wall interactions in interface-resolved simulations of particle-laden flows. Three types of interparticle interactions are taken into account: (1) long- and (2) short-range hydrodynamic interactions, and (3) solid-solid contact. Long-range interactions are incorporated through an efficient and second-order-accurate immersed boundar...

متن کامل

A tightly coupled particle–fluid model for DNA-laden flows in complex microscale geometries

We present a stable and convergent method for the computation of flows of DNA-laden fluids in microchannels with complex geometry. The numerical strategy combines a ball–rod model representation for polymers coupled tightly with a projection method for incompressible viscous flow. We use Cartesian grid embedded boundary methods to discretize the fluid equations in the presence of complex domain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 8 7  شماره 

صفحات  -

تاریخ انتشار 2008